From Prof. J. Nathan Kutz’ Lecture 001
Phase-Plane Analysis For Nonlinear Dynamics
We begin by reviewing linear system
\[\mathbf{x}'=\mathbf{Ax}\]where
\[\mathbf{x} \in \mathbb{R}^{2}, \mathbf{A} \in \mathbb{R}^{2 \times 2}\]The equilibrium points of this system are determined by setting \(\mathbb{x}'=0\).
\[\mathbf{x}'=\mathbf{Ax}=0 \implies \mathbf{x}=0\]Here we assume \(A\) is not singular. The differential equation can be solved by
\[\mathbf{x}=\mathbf{v}e^{\lambda t} \implies (\mathbf{A}-\lambda \mathbf{I})\mathbf{v}=0\]There are five cases
- Cases 1: eigenvalues are real, unequal, same sign
- Cases 2: eigenvalues are real, opposite sign
- Cases 3: eigenvalues are real and equal
For the case of a double root, two possibilities exist: either we can find two linearly independent eigenvectors so that our solution is
\[\mathbf{x} = c_1 \mathbf{v}^{(1)}e^{\lambda_1 t} + c_2 \mathbf{v}^{(2)} e^{\lambda_1 t}\]or, there is only one eigenvector, and we must generate a generalized eigenvector via the methods
\[\mathbf{x} = c_1 \mathbf{v}^{(1)}e^{\lambda_1 t} + c_2 [\mathbf{v}^{(1)}t e^{\lambda_1 t}+\boldsymbol{\eta}e^{\lambda_1 t}]\]- Cases 4: eigenvalues are complex eigenvalues
- Cases 5: eigenvalues are purely imaginary