Home Calculus 006
Post
Cancel

Calculus 006

From Zhenyu Qi’ Lecture 006

Seperated Sequences

Given a sequence \(a_n (n \in \mathbb{N})\), we can seperate all terms into two sequences:

\[a_{n_1}, a_{n_2}, \dots \text{ and } a_{n_1'}, a_{n_2'}, \dots\]

with

\[n_1 < n_2 < \dots \text{ and } n_1' < n_2' < \dots\]

also

\[\begin{align} \{n_1, n_2, \dots\} \cup \{n_1', n_2', \dots\} &= \mathbb{N}\\ \{n_1, n_2, \dots\} \cap \{n_1', n_2', \dots\} &= \emptyset \end{align}\]

s.t. \(a_{n_j} \ge 0 (j \in \mathbb{N})\) and \(a_{n_k'} \le 0 (k \in \mathbb{N})\)

Let \(p_j := a_{n_j} (j \in \mathbb{N})\) and \(q_k := - a_{n_k'} (k \in \mathbb{N})\), we know \(p_j \ge 0, q_k \ge 0\).

Exercise 3: Show that

\[\sum_{n} \vert a_n \vert < \infty \iff \sum_{j} p_j < \infty \land \sum_{k} q_k < \infty\]

Moreover, if and side holds, then

\[\sum_{n} \vert a_n \vert = \sum_{j} p_j + \sum_k q_k\] \[\sum_{n} a_n = \sum_{j} p_j - \sum_k q_k\]

Proof:

  \(\implies\): Let the partial sum of \(\sum_n \vert a_n \vert\) has upper bound M.

The partial sum of \(\sum_j p_j\) is less or equal to the partial sum of \(\sum_n \vert a_n \vert\)

\[\begin{align} &p_1 + \dots + p_k = a_{n_1} + \dots + a_{n_k}\\ \le & \vert a_1 \vert + \vert a_2 \vert + \dots + \vert a_{n_k} \vert \le M \end{align}\]

Thus the right side has upper bound, thus converges.

  \(\Longleftarrow\): Let the partial sum of \(\sum_j p_j, \sum_k q_k\) has uppber bound \(U, V\) respectively. Consider the partial sum of \(\sum_n \vert a_n \vert\)

\[\vert a_1 \vert + \dots + \vert a_k \vert \le p_1 + \dots + p_k + q_1 + \dots + q_k \le U + V\]

To prove \(\sum_{n} \vert a_n \vert = \sum_{j} p_j + \sum_k q_k\), let \(s_k = \vert a_1 \vert + \dots + \vert a_k \vert\), \(u_k = p_1 + \dots + p_k\), \(v_k = q_1 + \dots + q_k\), and let

\[\lim_{k\to \infty} u_k = L_p\] \[\lim_{k\to\infty} v_k = L_q\]

We know

\[s_k \le u_k + v_k \implies \lim_{k \to \infty} s_k \le L_p + L_q\]

also

\[u_k + v_k \le s_{\max(n_k, n'_k)}\]

It is easy to see \(\lim_{k\to\infty} s_{\max(n_k,n'_k)} = \lim_{k\to\infty} s_k\), thus

\[\lim_{k\to\infty} s_k \ge L_p + L_q\]

Thus \(\sum_{n} \vert a_n \vert = \sum_{j} p_j + \sum_k q_k\).

To prove \(\sum_{n} a_n = \sum_j p_j - \sum_k q_k\), now let \(s_k = a_1 + \dots + a_k\)

\[\forall \varepsilon > 0 \exists N \in \mathbb{N} [k \ge N \implies \vert u_k - L_p \vert < \varepsilon \land \vert v_k - L_q \vert < \varepsilon]\] \[k \ge \max(n_N, n_N') \implies s_{k} = u_{N_1} - v_{N_2}, \text{ where } N_1 \ge N, n_2 \ge N\] \[k \ge \max(n_N, n_N') \implies \vert s_{k} - (L_p - L_q) \vert = \vert (u_{N_1} - L_p) + (v_{N_2} - L_q) \vert \le 2 \varepsilon\]

Thus \(\sum_{n} a_n = \sum_j p_j - \sum_k q_k\).

Two Convergent Series

  •   \(\sum_n a_n\) and \(\sum_n b_n\) converge \(\implies \sum_{n} (a_n \pm b_n) = \sum_n a_n \pm \sum_n b_n\)
\[A_n = a_1 + \dots + a_n, B_n = b_1 + \dots + b_n, S_n = a_1 + b_1 + \dots + a_n + b_n\] \[\forall \varepsilon > 0 \exists N \in \mathbb{N} [n \ge N \implies \vert A_n - A \vert < \varepsilon \land \vert B_n - B \vert < \varepsilon]\] \[\forall \varepsilon > 0 \exists N \in \mathbb{N} [n \ge N \implies \vert S_n - (A + B)\vert < 2 \varepsilon]\]
  • Inserting finite number of 0s into all the two neighbor terms, will not affect its convergence or divergence and its sum (if the sum exists).

16min

This post is licensed under CC BY 4.0 by the author.