Home Cauchy Inequality
Post
Cancel

Cauchy Inequality

Review inner product: an inner product \(\langle x, y \rangle \to \mathbb{R}\) if and only if it satisfies

  1.   \(\langle x, y \rangle = \langle y, x \rangle\)

  2.   \(\langle x, x \rangle \ge 0\)

  3.   \(\langle x, x \rangle = 0 \quad \implies \quad x = 0\). Confusion: do we really need this?

  4.   \(\langle x, \alpha y + \beta z \rangle = \alpha \langle x, y \rangle + \beta \langle x, z \rangle\)

  5.   \(\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle\)

Cauchy Inequality

\[\vert \langle x, y \rangle \vert \le \sqrt{\langle x, x\rangle \langle y, y \rangle}\]

Proof

\[g(\lambda) = \langle \lambda x + y, \lambda x + y \rangle = \lambda^2 \langle x,x \rangle + 2 \lambda \langle x, y \rangle + \langle y, y \rangle \ge 0\]

the above we use proerty 1, 2, 4, 5.

if \(\langle x, x \rangle = 0\), then \(\langle x, y \rangle\) must be 0. Otherwise we can take \(\lambda = \dfrac{-1 + \langle y, y \rangle}{2 \langle x , y \rangle}\) such that \(g(\lambda) = -1\).

When \(\langle x, x \rangle = 0\), \(0 \le 0\) of course holds.

When \(\langle x, x \rangle \ne 0\), \(g(\lambda)\) is a quadratic equation with 1 or zero real root. Thus its discriminate \(b^2 - 4 ac < 0\)

\[(2\langle x, y \rangle )^2 - 4 \langle x, x \rangle \langle y, y \rangle \le 0\]

it gives

\[\vert \langle x, y \rangle \vert \le \sqrt{\langle x, x\rangle \langle y, y \rangle}\]
This post is licensed under CC BY 4.0 by the author.