Home High Frequency Design Technique
Post
Cancel

High Frequency Design Technique

Introduction

What Are High Frequency

Our familiar lumped circuit analysis is only an approximation, which is approximately valid when the circuit dimensions are less than \(\lambda/10\).

\(f\)\(\lambda\)\(\lambda/10\)
1 GHz30 cm3cm
10 GHz3 cm3 mm
100 GHz3 mm300 um

AC Analysis

For a impedance \(Z(s)\) consists of \(R, L\) and \(C\), if we apply a current \(i(t)=I \cos(\omega t + \varphi)\), then the voltage “response” can be understand as

\[v(t) \sim V \cos(\omega t + \theta)\]

with

\[V e^{j \theta} = I e^{j \varphi} \cdot Z(j\omega)\]

Average Power Consumption

Assume

\[\begin{cases} v(t) = V \cos(\omega t + \varphi)\\ i(t) = I \cos(\omega t + \theta) \end{cases}\] \[\overline{P} = \dfrac{1}{T} \int_0^{T} VI\cos(\omega t + \varphi) \cos(\omega t + \theta) dt = \dfrac{VI}{2} \cos(\theta-\varphi)\]

In phaser representation

\[\overline{P} = \dfrac{1}{2} \mathrm{Re}(V I^*)\]

Maximum Power Transfer

Assume a AC voltage source \(V_G \cos(\omega t)\) with internal impedance \(Z_G = R_G + j X_G\). What load impedance will results maximum average power on the load?

\[\overline{P_L} = \dfrac{1}{2}\mathrm{Re}\left(\dfrac{V_G(R_L+j X_L)}{R_G+jX_G + R_L + jX_L} \cdot \dfrac{V_G}{R_G-j X_G + R_L - j X_L}\right)\]

we need to maximax

\[\dfrac{R_L}{(R_G+R_L)^2+(X_G+X_L)^2}\]

so the maximum power transfer happens when

\[\begin{cases} R_L = R_G\\ X_L = -X_G \end{cases}\]

Maxwell’s Equations

\[\begin{cases} \nabla \cdot \vec{D} = \rho\\ \nabla \cdot \vec{B} = 0\\ \nabla \times \vec{E} = -\dfrac{\partial \vec{B}}{\partial t}\\ \nabla \times \vec{H} = \dfrac{\partial \vec{D}}{\partial t} + \vec{J}\\ \vec{D} = \epsilon \vec{E}\\ \vec{H} = \vec{B}/\mu\\ \nabla \cdot \vec{J} + \dfrac{\partial \rho}{\partial t} = 0\\ \vec{J} = \rho \vec{u} \end{cases}\]

In fact, the two divergence equation can be derived from the two curl equation (how?).

Lorentz’s Force

\[\vec{F} = q(\vec{E} + \vec{u}\times\vec{B})\]

Boundary Condition

\[\begin{align} E_{1t} = E_{2t}\\ \dots \end{align}\]

For boundary condition between dielectric and conductor, \(\hat{a_n}\) points fron conductor to dielectric.

Wave Equation

\[\dfrac{1}{\mu\epsilon}\nabla^2 \vec{E} = \dfrac{\partial^2 \vec{E}}{\partial t^2}\] \[\dfrac{1}{\mu\epsilon}\nabla^2 \vec{H} = \dfrac{\partial^2 \vec{H}}{\partial t^2}\] \[c^2 = \dfrac{1}{\mu\epsilon}\]

Example

\[c^2 \dfrac{\partial^2 f}{\partial x^2} = \dfrac{\partial^2 f}{\partial t^2}\]

From d’Alembert’s solution, the general solution is given by

\[f(x,t) = F(kx+\omega t) + G(kx-\omega t)\]

where \(\omega/k = c\)

Time Harmonic Field

Steady State Solution

\[\vec{E}(x,y,z;t) = \mathrm{Re}\left(\vec{E}_{0}(x,y,z) e^{j\omega t}\right)\]

Similar to the phasor in AC analysis, assume each component of the vector field is a phasor (having the same time frequency).

\[\begin{cases} \nabla \times \vec{E} = -j\omega \mu \vec{H}\\ \nabla \times \vec{H} = \vec{J} + j\omega\epsilon \vec{E}\\ \nabla \cdot \vec{E} = \dfrac{\rho}{\epsilon}\\ \nabla \cdot \vec{H} = 0 \end{cases}\]

then for source free wave equation

\[\nabla^2 \vec{E} + k^2 \vec{E} = 0\]

where \(k^2 = \omega^2 \mu\epsilon\)

In the case of wave in conductor, we can define the compex permittivity

\[\epsilon_c = \epsilon - j \dfrac{\sigma}{\omega}\]

where \(\vec{J} = \sigma \vec{E}\) (Ohms law).

Plane Wave

In Lossless Media

\[\nabla^2 \vec{E} + k^2 \vec{E} = 0\] \[\begin{cases} \left(\dfrac{\partial^2}{\partial x^2} + \dfrac{\partial^2}{\partial y^2} + \dfrac{\partial^2}{\partial z^2} + k^2\right) E_x(x,y,z) = 0\\ \left(\dfrac{\partial^2}{\partial x^2} + \dfrac{\partial^2}{\partial y^2} + \dfrac{\partial^2}{\partial z^2} + k^2\right) E_y(x,y,z) = 0\\ \left(\dfrac{\partial^2}{\partial x^2} + \dfrac{\partial^2}{\partial y^2} + \dfrac{\partial^2}{\partial z^2} + k^2\right) E_z(x,y,z) = 0 \end{cases}\]

Assume \(E_x(x,y,z) = X(x)Y(y)Z(z)\)

\[\left(\dfrac{\partial^2}{\partial x^2} + \dfrac{\partial^2}{\partial y^2} + \dfrac{\partial^2}{\partial z^2} + k^2\right) X(x)Y(y)Z(z) = 0\] \[\dfrac{X''}{X} + \dfrac{Y''}{Y} + \dfrac{Z''}{Z} + k^2 = 0\] \[k_x^2 + k_y^2 + k_z^2 = k^2\] \[E_x(x,y,z) = A e^{-j k_x x} B e^{-j k_y y} C e^{-j k_z z} = E_{x0} e^{-j \vec{k} \cdot \vec{R}}\]

Assume for \(E_y, E_z\) they have the same \(\vec{k}\) as \(E_x\).

\[\vec{E}(x,y,z) = \vec{E_0} e^{-j \vec{k}\cdot\vec{R}}\]

Does it allow different \(k_x,k_y,k_z\) for different components?

Assume source free space

\[\nabla \cdot \vec{E} = 0\] \[\vec{E} = \vec{E_0} e^{-j \vec{k}\cdot\vec{R}}\] \[\vec{k} \cdot \vec{E} = 0\]

The magnetic field can be calculated from

\[\begin{align} \vec{H} &= -\dfrac{1}{j\omega \mu} \nabla \times \left( \vec{E_0} e^{-j \vec{k}\cdot \vec{R}} \right)\\ &= \dfrac{1}{-j\omega\mu} \nabla\left(e^{-j \vec{k}\cdot\vec{R}}\right)\times \vec{E_0}\\ &= \dfrac{-j\vec{k}}{-j\omega\mu}e^{-j\vec{k}\cdot\vec{R}} \times \vec{E_0}\\ &= \dfrac{\vec{k} \times \vec{E}}{\omega\mu} = \dfrac{1}{\eta} \hat{a_n} \times \vec{E} \end{align}\]

This is typical TEM wave, where the field is orthgonal to travel direction.

Polarization

Assume

\[\begin{align} \vec{E}(z) &= \left(\hat{a_x} E_x + \hat{a_y}E_y\right) e^{-jkz}\\ &= \left(\hat{a_x} E_{x0} e^{-j\phi_{x0}} + \hat{a_y} E_{y0} e^{-j\phi_{y0}}\right) e^{-jkz} \end{align}\]

Dependent on the values of \(\phi_{x0}, \phi_{y0}\) and \(E_{x0}, E_{y0}\), it will show different polarization.

In Lossy Media

\[\nabla^2 \vec{E} + k_c^2 \vec{E} = 0\] \[k_c = \omega \sqrt{\mu \epsilon_c}\] \[\begin{align} \gamma &= jk_c = j\omega \sqrt{\mu\epsilon}\left(1+\dfrac{\sigma}{j\omega\epsilon}\right)^{1/2}\\ &= \alpha + j\beta \end{align}\] \[\nabla^2 \vec{E} - \gamma^2 \vec{E} = 0\] \[\vec{E} = \hat{a_x} E_0 e^{-\gamma z} = \hat{a_x} E_0 e^{-\alpha z} e^{-j\beta z}\]

Low-Loss Dielectrics

Good Conductors

Group Velocity

phase velocity

\[u_p = \dfrac{\omega}{\beta}\]

Dispersion: the situation when the phase velocity is different for different frequency.

Assume two frequency \(\omega_0 \pm \Delta \omega\) with the same amptitude.

\[\begin{align} E(z,t) &= E_0 \cos\left[(\omega_0+\Delta\omega)t - (\beta_0+\Delta\beta)z\right] + E_0\cos\left[(\omega_0-\Delta\omega)t - (\beta_0-\Delta\beta)z\right]\\ &= 2E_0\cos(\Delta \omega t - \Delta \beta z) \cos(\omega_0 t - \beta_0 z) \end{align}\]

This is a carrier at frequency \(\omega_0\) and an envelop at frequency \(\Delta\omega\). The phase velocity of carrier is

\[u = \dfrac{\omega_0}{\beta_0}\]

The phase velocity of envelop is

\[u = \dfrac{\Delta \omega}{\Delta \beta}\]

We call it group velocity

\[u_g = \dfrac{1}{d\beta/d\omega}\] \[u_g = \dfrac{u_p}{1-\dfrac{\omega}{u_p} \dfrac{du_p}{d\omega}}\]

Poynting Vector

\[\begin{align} &\nabla \cdot (\vec{E} \times \vec{H}) = \vec{H} \cdot (\nabla \times \vec{E}) - \vec{E} \cdot (\nabla \times \vec{H})\\ =& -\dfrac{\partial}{\partial t} \left(\dfrac{1}{2}\epsilon E^2 + \dfrac{1}{2}\mu H^2\right) - \sigma E^2 \end{align}\]

  \(\vec{E}\times\vec{H}\) (Poynting vector) is the total power flow.

In the case of steady state sinosoidal analysis, the average power flow

\[P_{\mathrm{av}} = \dfrac{1}{2}\mathrm{Re}(\vec{E}\times \vec{H}^*)\]

Normal Incidence At A Plane Conducting Boundary

Assume the wave travel from \(\sigma=0\) to \(\sigma=\infty\). Incident wave

\[\begin{cases} \vec{E_i}(z) = \hat{a_x} E_{i0} e^{-j\beta_{1}z}\\ \vec{H_i}(z) = \hat{a_y} \dfrac{E_{i0}}{\eta_1} e^{-j\beta_1 z} \end{cases}\]

Reflected wave

\[\vec{E_r} = \hat{a_x} E_{r0} e^{+j\beta_1 z}\]

Total \(\vec{E}\) in medium 1

\[\vec{E_i} + \vec{E_r} = \hat{a_x} E_{i0} e^{-j\beta_{1}z} + \hat{a_x} E_{r0} e^{+j\beta_1 z}\]

using boundary condition for perfect conductor

\[E_{r0} = - E_{i0}\]

  \(\vec{H_r}\) can get from \(\vec{E_r}\).

Oblique Incidence At A Plane Conducting Boundary

Perpendicular Polarization

For the components that \(\vec{E_i}\) is perpendicular to plane of incidence.

We guess the reflected wave \(\vec{E_r}\) is also perpendicular to the plane of incidence.

\[\hat{a_{ni}} = \hat{a_x}\sin\theta_i + \hat{a_z} \cos\theta_i\] \[\vec{E_i} = \hat{a_y} E_{i0} e^{-j\beta_1 (x\sin\theta_i + z\cos\theta_i)}\]

Incidence At A Plane Dielectric

Waveguides

Uniform Guiding Structure

\[\vec{E}(x,y,z,t) = \mathrm{Re}\left\{ \vec{E_0}(x,y) e^{-\gamma z} e^{j\omega t}\right\}\] \[(\nabla^2 + k^2) \vec{E} = 0\] \[\nabla^2 = \nabla_{xy}^2 + \gamma^2 = \nabla_{t}^2 + \gamma^2\] \[\left(\nabla_{xy}^2 + \gamma^2 + k^2\right) \vec{E} = 0\]

where \(t\) means transverse (TE,TM,TEM), which means orthogonal to something.

Note that the solution may not be plane wave, which means the \(\vec{E}, \vec{H}\) may not be orthogonal to travelling direction. So we need to solve all the components \(E_x, E_y, E_z, H_x, H_y, H_z\).

Assuming source free in the waveguide (not on the surface)

\[\begin{cases} \nabla \times \vec{E} = -j\omega\mu\vec{H}\\ \nabla \times \vec{H} = -j\omega\epsilon \vec{E} \end{cases}\]

Once we solved \(E_z, H_z\), the other four components

\[\begin{cases} H_x = -\dfrac{1}{h^2}\left(\gamma \dfrac{\partial H_z}{\partial x} - j\omega\epsilon \dfrac{\partial E_z}{\partial y}\right)\\ \vdots \end{cases}\]

where \(h^2 = \gamma^2 + k^2\)

  • TEM waves: \(E_z=H_z=0\).
  • TM waves: \(H_z=0\).
  • TE waves: \(E_z=0\).

Is it possible \(E_z\ne 0, H_z\ne 0\)?

Parallel-Plate Waveguide

Assume \(w \gg b\).

TEM

Assume TEM mode, and assume a plane wave

\[\begin{cases} \vec{E} = \hat{a_y} E_0 e^{-\gamma z}\\ \vec{H} = -\hat{a_x} \dfrac{E_0}{\eta} e^{-\gamma z} \end{cases}\]

where

\[\begin{cases} \gamma = j\beta = j\omega\sqrt{\mu\epsilon}\\ \eta = \sqrt{\dfrac{\mu}{\epsilon}} \end{cases}\]

Since we already know such wave satisfy Maxwell’s equation,we need to further check the boundary condition \(y=0, y=b\) for the plane wave.

\[\begin{cases} E_t = 0\\ H_n = 0 \end{cases}\]

and the boundary condition is satisfied. So we find a simple solution. The frequency \(\omega\) can be any frequency.

The parallel plate will have surface charge and surface current.

\[\begin{cases} \rho = \hat{a_n} \cdot \vec{D}\\ \vec{J} = \hat{a_n} \times \vec{H} \end{cases}\]

for \(y=0\), \(\hat{a_n} = +\hat{a_y}\).

\[\begin{cases} \rho = \epsilon E_0 e^{-j\beta z}\\ \vec{J} = \hat{a_z} \dfrac{E_0}{\eta} e^{-j\beta z} \end{cases}\]

TM

Assume \(E_z(x,y,z)\) doesn’t depends on \(x\), since \(x\) is wide enough.

\[E_z(x,y,z) = E_z^0(y)e^{-\gamma z}\] \[\left(\nabla_{xy}^2 + h^2\right) \vec{E} = 0\] \[\dfrac{d^2}{dy^2} E_{z}^0 (y) + h^2 E_z^0 (y) = 0\]

with boundary condition

\[E_z^0(y) \vert_{y=0,y=b} = 0\] \[E_z^0(y) = A_n \sin \dfrac{n\pi y}{b}\] \[h = \dfrac{n\pi}{b}\]

then all the other components can be calculated by the equations.

\[\gamma = \sqrt{h^2-k^2} = \sqrt{\left(\dfrac{n\pi}{b}\right)^2 - \omega^2\mu\epsilon}\]

Dielectric Waveguide

Antennas

For static field (static \(\rho, \vec{J}\)).

\[\begin{cases} \nabla \times \vec{E} = 0 \quad \implies \quad \vec{E} = -\nabla V\\ \nabla \cdot \vec{B} = 0 \quad \implies \quad \vec{B} = \nabla \times \vec{A} \end{cases}\] \[\begin{cases} V = \int \dfrac{1}{4\pi\epsilon} \dfrac{\rho dv}{R}\\ \vec{A} = \int \dfrac{\mu}{4\pi} \dfrac{\vec{J} dv}{R} \end{cases}\]

For time varying field

\[\nabla \times \vec{E} = -\dfrac{\partial \vec{B}}{\partial t} = -\dfrac{\partial}{\partial t} \left(\nabla \times \vec{A}\right)\] \[\vec{E} = \dfrac{1}{j\omega\epsilon} \nabla \times \vec{H}\] \[\nabla \times \left(\vec{E} + \dfrac{\partial \vec{A}}{\partial t}\right) = 0\] \[\vec{E} + \dfrac{\partial \vec{A}}{\partial t} = -\nabla V\] \[\vec{E} = -\nabla V - \dfrac{\partial \vec{A}}{\partial t}\] \[\nabla \times \left(\dfrac{\nabla \times \vec{A}}{\mu}\right) = \vec{J} + \dfrac{\partial}{\partial t} \left[\epsilon \left(-\nabla V - \dfrac{\partial \vec{A}}{\partial t}\right)\right]\] \[\begin{align} \nabla \times \left(\nabla \times \vec{A}\right) &= \mu \vec{J} + \mu\epsilon \dfrac{\partial}{\partial t}(-\nabla V - \dfrac{\partial \vec{A}}{\partial t})\\ &= \nabla \left(\nabla \cdot \vec{A}\right) - \nabla^2 \vec{A} \end{align}\] \[\nabla^2 \vec{A} - \mu\epsilon \dfrac{\partial^2 \vec{A}}{\partial t^2} = -\mu \vec{J} + \nabla\left(\nabla\cdot \vec{A} + \mu\epsilon\dfrac{\partial V}{\partial t}\right)\]

Let’s define

\[\begin{cases} \nabla \times \vec{A} = \vec{B}\\ \nabla \cdot \vec{A} + \mu\epsilon\dfrac{\partial V}{\partial t} = 0 \quad \text{(Lorentz condition)} \end{cases}\] \[\nabla^2 \vec{A} - \mu\epsilon\dfrac{\partial^2 \vec{A}}{\partial t^2} = -\mu \vec{J}\] \[\begin{align} - \nabla \cdot \left(\nabla V\right) &= \nabla \cdot \left(\vec{E}+\dfrac{\partial \vec{A}}{\partial t}\right)\\ &= \dfrac{\rho}{\epsilon} + \dfrac{\partial}{\partial t} \left(\nabla \cdot \vec{A}\right)\\ &= \dfrac{\rho}{\epsilon} + \dfrac{\partial}{\partial t} \left(-\mu\epsilon \dfrac{\partial V}{\partial t}\right)\\ &= -\nabla^2 V \end{align}\] \[\nabla^2 V - \mu\epsilon \dfrac{\partial^2 V}{\partial t^2} = -\dfrac{\rho}{\epsilon}\]

the solution is given by

\[V(\vec{R},t) = \dfrac{1}{4\pi\epsilon} \int \dfrac{\rho \left(\vec{R'}, t-\dfrac{\vert \vec{R} - \vec{R}' \vert}{u}\right)}{\vert \vec{R}-\vec{R'} \vert} dv\]

where \(u = \dfrac{1}{\sqrt{\mu\epsilon}}\).

For sinosoidal steady state

\[\vec{A}(\vec{R}, t) = \dfrac{\mu}{4\pi} \int \dfrac{\mathrm{Re}\left\{\vec{J}(\vec{R'}) e^{j\omega(t-\Delta t)}\right\}}{\vert \vec{R'} - \vec{R} \vert} dv\]

In phasor form

\[\vec{A} = \dfrac{\mu}{4\pi}\int \dfrac{\vec{J} \cdot e^{-jkR}}{R} dv\] \[V = \dfrac{1}{4\pi\epsilon}\int \dfrac{\rho e^{-jkR}}{R} dv\]

Hertizen Dipoles

\[i(t) = I\cos\omega t = \dfrac{d q(t)}{dt}\] \[I=j\omega Q\] \[\vec{P} = \hat{a_z} \cdot dl \cdot Q = \hat{a_z} \dfrac{I \cdot dl}{j\omega}\] \[\begin{align} \vec{A} &= \dfrac{\mu}{4\pi} \dfrac{\vec{J} e^{-jkR} dv}{R}\\ &= \hat{a_z} \dfrac{\mu}{4\pi} \dfrac{I dl \cdot e^{-j\beta R}}{R}\\ &= \hat{a_R} A_R + \hat{a_\theta} A_\theta \end{align}\] \[\vec{H} = \dfrac{1}{\mu} \nabla \times \vec{A}\]

Transmission Lines

\[-\dfrac{\partial v(z,t)}{\partial z} = R i(z,t) + L \dfrac{\partial i(z,t)}{\partial t}\] \[-\dfrac{\partial i(z,t)}{\partial z} = G v(z,t) + C \dfrac{\partial v(z,t)}{\partial t}\] \[\begin{cases} -\dfrac{d V(z)}{dz} = (R+j\omega L) I(z)\\ -\dfrac{d I(z)}{dz} = (G + j\omega C) V(z) \end{cases}\] \[\begin{cases} \dfrac{d^2 V(z)}{dz^2} = \gamma^2 V(z)\\ \dfrac{d^2 I(z)}{dz^2} = \gamma^2 V(z) \end{cases}\] \[\gamma = \alpha + j\beta = \sqrt{(R+j\omega L)(G+j\omega C)}\] \[Z_0 = \dfrac{R+j\omega L}{\gamma} = \dfrac{\gamma}{G+j\omega C} = \sqrt{\dfrac{R+j\omega L}{G+j\omega C}}\]

Finite Transmission Lines

\[\begin{cases} V(z) = V_0^+ e^{-\gamma z} + V_0^- e^{+\gamma z}\\ I(z) = I_0^+ e^{-\gamma z} + I_0^- e^{+\gamma z} \end{cases}\] \[\dfrac{V_0^+}{I_0^+} = - \dfrac{V_0^-}{I_0^-} = Z_0\]

Boundary condition at \(z = l\)

\[\dfrac{V(l)}{I(l)} = \dfrac{V_L}{I_L} = Z_L\]

we can imagine if \(Z_L = Z_0\), then with only \(V_0^+\), it can satisfy the boundary condition, such that there is no refection wave.

\[\begin{cases} V(l) = V_L = V_0^+ e^{-\gamma l} + V_0^- e^{+\gamma l}\\ I(l) = I_L = \dfrac{V_0^+}{Z_0} e^{-\gamma l} - \dfrac{V_0^-}{Z_0} e^{+\gamma l} \end{cases}\] \[\begin{cases} V(z) = \dfrac{I_L}{2} \left[(Z_L+Z_0)e^{\gamma (l-z)} + (Z_L-Z_0)e^{-\gamma(l-z)}\right]\\ I(z) = \dfrac{I_L}{2Z_0} \left[(Z_L+Z_0)e^{\gamma (l-z)} - (Z_L-Z_0)e^{-\gamma(l-z)}\right] \end{cases}\] \[\begin{cases} V(z') = I_L (Z_L \cosh \gamma z' + Z_0 \sinh \gamma z')\\ I(z') = \dfrac{I_L}{Z_0} (Z_L \sinh \gamma z' + Z_0 \cosh \gamma z') \end{cases}\] \[Z_i = Z_0 \dfrac{Z_L + Z_0 \tanh \gamma l}{Z_0 + Z_L \tanh \gamma l}\]

Transmission Line As Circuit Elements

For lossless transmission line

\[Z_i = Z_0 \dfrac{Z_L + j Z_0 \tan\beta l}{Z_0 + j Z_L \tan\beta l}\]

If \(Z_L \to \infty\)

\[Z_i = -j Z_0 \cot \beta l\]

If \(Z_L = 0\)

\[Z_i = j Z_0 \tan\beta l\]

Quarter-wave section: \(l = \lambda/4, \beta l = \pi/2\).

\[Z_i = \dfrac{Z_0^2}{Z_L}\]

also called quarter wave transformer.

Half-wave section: \(l = \lambda/2, \beta l = \pi\).

\[Z_i = Z_L\]

Lines With Resistive Termination

\[\begin{align} V(z') &= \dfrac{I_L}{2} (Z_L + Z_0) e^{\gamma z'} \left[1 + \dfrac{Z_L - Z_0}{Z_L + Z_0}e^{-2\gamma z'}\right]\\ &= \dfrac{I_L}{2}(Z_L + Z_0) e^{\gamma z'} [1 + \Gamma e^{-2\gamma z'}] \end{align}\] \[\Gamma = \dfrac{Z_L - Z_0}{Z_L + Z_0}\]

Transmission Line Circuits

\[V(z') = \dfrac{Z_0 V_g}{Z_0 + Z_g} e^{-\gamma z} \left(\dfrac{1+\Gamma e^{-2\gamma z'}}{1-\Gamma_g \Gamma e^{-2\gamma l}}\right)\]

The Smith Chart

Lossless Transmission Line.

\[\Gamma = \dfrac{z_L - 1}{z_L + 1}\] \[z_L = \dfrac{1+\Gamma}{1-\Gamma}\]

plot \(\Gamma\) on the complex plane.

Now 9.6(1/2)

LC Resonance and Matching Networks

LC Resonance

For series-connected LC circuit, when the reactance magnitudes of \(L\) and \(C\) are equal, the pair resonates.

\[\omega_0 = \dfrac{1}{\sqrt{LC}}\]

Series Circuit Quality Factors

Impedance \(Z\), resistance \(R\) and reactance \(X\).

Q of Inductors and Capacitors

We can model real inductor as the combination of resistance and reactance

\[Z_L = R_L + j X_L\] \[Z_C = R_C + j X_C\]

For series \(L\) and \(R_L\)

\[Q = \dfrac{X_L}{R_L} = \dfrac{\omega L}{R_L}\]

For series \(C\) and \(R_C\)

\[Q = \dfrac{X_C}{R_C} = \dfrac{1}{\omega C R_C}\]

Unloaded Q

The above apply to inductor or capacitor only. If we connect such real inductor and capacitor in series, it seems we get two different \(Q\)

\[Q_1 = \dfrac{\omega L}{R_L + R_C}\] \[Q_2 = \dfrac{1}{\omega C (R_L+R_C)}\]

Which one should we use? Actually at frequency \(\omega_0 = 1/\sqrt{LC}\)

\[Q_U = \dfrac{\omega_0 L}{R_L+R_C} = \dfrac{1}{\omega_0 C(R_L+R_C)}\]

the \(Q_U\) is called as unloaded Q.

Loaded Q

Then, the series connected real inductor and capacitor, and connected to some resistors and sources (including their internal resistance). Naturally, the loaded Q is defined as

\[Q_L = \dfrac{\omega_0 L}{Z_{\text{others}} + R_L + R_C} = \dfrac{1}{\omega_0 C (Z_{\text{others}} + R_L + R_C)}\]

Parallel Circuit Quality Factors

Admittance \(Y\), conductance \(G\) and susceptance \(B\).

\[Y_L = G_L + jB_L\] \[Y_C = G_C + jB_C\]

For parallel \(L\) and \(G_L\)

\[Q = \dfrac{B_L}{G_L} = \dfrac{1}{\omega L G_L}\]

For parallel \(C\) and \(G_C\)

\[Q = \dfrac{B_C}{G_C} = \dfrac{\omega C}{G_C}\]

Similarly

\[Q_U = \dfrac{1}{\omega L (G_L+G_C)} = \dfrac{\omega C}{G_L + G_C}\] \[Q_L = \dfrac{1}{\omega_L (G_{\text{others}} + G_L + G_C)} = \dfrac{\omega C}{G_{\text{\others}} + G_L + G_C}\]

Coupled Resonators

Distributed Circuits

This post is licensed under CC BY 4.0 by the author.