Home Markov Chain
Post
Cancel

Markov Chain

From Hao Zhang’s Lecture 13-18

Markov Chain

Markov property:

We discuss Distrete time, discrete states random process

\[\{X_n\}_{n=0}^{\infty}, \quad X_k \in S = \{x_1, x_2, \dots \} \text{ (finite or countably infinite) }\]

Markov property assumes

\[P(X_n = x_n \vert X_{n-1} = x_{n-1}, \dots, X_0 = x_0) = P(X_{n}=x_n \vert X_{n-1}=x_{n-1})\]

then

\[\begin{align} &P(X_n=x_n, \dots, X_0=x_0) = P(X_n=x_n \vert X_{n-1}=x_{n-1}, \dots, X_0=x_0) P(X_{n-1}=x_{n-1}, \dots, X_0=x_0)\\ =& P(X_n=x_n \vert X_{n-1}=x_{n-1}, \dots, X_0=x_0) P(X_{n-1}=x_{n-1} \vert X_{n-2}=x_{n-2}, \dots, X_0=x_{0}) P(X_{n-2}=x_{n-1}, \dots, X_0=x_0)\\ =& \Big( \prod_{k=1}^n P(X_k=x_k \vert X_{k-1}=x_{k-1}, \dots, X_0=x_0) \Big) P(X_0 = x_0)\\ =& \Big(\prod_{k=1}^n P(X_k = x_k \vert X_{k-1} = x_{k-1})\Big) P(X_0=x_0) \end{align}\]
This post is licensed under CC BY 4.0 by the author.