Inductor Simulation
using sp
or psp
simulation to simulate inductor, we calculate the Z parameter
In virtuoso
1
2
3
4
5
Imagz = imag(zpm('psp 1 1)) + imag(zpm('psp 2 2)) - imag(zpm('psp 1 2)) - imag(zpm('psp 2 1))
Ls = Imagz / 2 / 3.14 / xval(Imagz)
Rs = real(zpm('psp 1 1)) + real(zpm('psp 2 2)) - real(zpm('psp 1 2)) - real(zpm('psp 2 1))
Q = Imagz / Rs
Rp = (1+Q*Q)*Rs
Capacitor Simulation
\[C_s = -\dfrac{1}{2\pi f} \cdot \dfrac{1}{Im(Z_{diff})}\] \[R_s = Re(Z_{diff})\]Phase Noise
References:
A Charge-Sharing Locking Technique With a General Phase Noise Theory of Injection Locking
Reference phase noise
\[\begin{align} \mathcal{L}_{ref}(f) &= \dfrac{1}{2} S_{\phi} = \dfrac{1}{2} S_{t} (2\pi F_{ref})^2\\ &= \dfrac{1}{2} \cdot \dfrac{\sigma_{t}^2}{F_{ref}/2} \cdot (2\pi F_{ref})^2\\ &= 4\pi^2 F_{ref} \cdot \sigma_{t}^2 \end{align}\]For example, \(\sigma_t = 112.5 \,\mathrm{ fs}\) with \(F_{ref} = 200\,\mathrm{ MHz}\), \(\mathcal{L}_{ref} = -160 \,\mathrm{ dBc/Hz}\).
However, this is the reference phase noise in the reference frequency domain. To the output it will be multiplied by \(N^2\) and low-passed by the loop filter.
VCO phase noise
\[\begin{align} \mathcal{L}_{osc}(f) &= \dfrac{1}{2} S_{\phi} = \dfrac{1}{2}S_t (2\pi F_{osc})^2\\ &= \dfrac{1}{2} \cdot \dfrac{\sigma_t^2}{F_{osc}/2} \cdot \left(\dfrac{F_{osc}}{2\pi f}\right)^2 \cdot (2\pi F_{osc})^2\\ &= \sigma_t^2 \cdot \dfrac{F_{osc}^3}{f^2} \end{align}\]For example, \(\sigma_t = 1 \,\mathrm{fs}, F_{osc} = 10\,\mathrm{GHz}, f = 10\,\mathrm{MHz}\), \(\mathcal{L}_{osc}(f) = -140\,\mathrm{dBc/Hz}\).
Fractional-N PLL quantization noise:
BBPLL Theory
Multirate time-domain model
Convert to single-rate model
Equivalent linear model
Under some assumption, approximately
\[K_{BPD} = \sqrt{\dfrac{2}{\pi}} \cdot \dfrac{1}{\sigma_{\Delta t}}\] \[\sigma_q^2 = 1 - K_{BPD}^2 \cdot \sigma_{\Delta t}^2 = 1 - \dfrac{2}{\pi}\]Given \(\sigma_{ref}, \sigma_{DCO}, K_P, K_I, N, K_T\), we want to find the value of \(K_{BPD}\). For simplicity, we assume \(K_I\) is very small (\(K_I \ll K_P\)) such that we can ignore it. And we denote \(\chi = N K_{BPD} K_P K_T\).
\[\begin{align} Y_1[k+1] &= Y_1[k] + \chi \left(\sigma_{ref}[k] - Y_1[k]\right)\\ &= (1-\chi) Y_1[k] + \chi \sigma_{ref}[k] \end{align}\]since \(Y_1[k]\) and \(\sigma_{ref}[k]\) are independent
\[\sigma_{Y_1}^2 = (1-\chi)^2 \sigma_{Y_1}^2 + \chi^2 \sigma_{ref}^2\] \[\sigma_{Y_1}^2 = \dfrac{\chi}{2-\chi} \sigma_{ref}^2\] \[\sigma_{\Delta t_1}^2 = \sigma_{ref}^2 + \sigma_{Y_1}^2 = \dfrac{2}{2-\chi} \sigma_{ref}^2\]\[\begin{align} Y_2[k+1] &= Y_2[k] + \dfrac{\chi}{K_{BPD}}\left(\sigma_q[k] - K_{BPD} Y_2[k]\right)\\ &= \left(1 - \chi\right) Y_2[k] + \dfrac{\chi}{K_{BPD}} \sigma_q[k] \end{align}\] \[\sigma_{\Delta t_2}^2 = \sigma_{Y_2}^2 = \dfrac{\chi}{2-\chi} \dfrac{\sigma_{q}^2}{K_{BPD}^2}\]\[\begin{align} Y_3[k+1] &= Y_3[k] + (\sqrt{N} \sigma_{DCO}[k] - \chi Y_3[k])\\ &= (1-\chi) Y_3[k] + \sqrt{N} \sigma_{DCO}[k] \end{align}\] \[\sigma_{\Delta t_3}^2 = \sigma_{Y_3}^2 = \dfrac{N}{\chi(2-\chi)} \sigma_{DCO}^2\] \[\begin{align} \sigma_{\Delta t}^2 &= \sigma_{\Delta t_1}^2 + \sigma_{\Delta t_2}^2 + \sigma_{\Delta t_3}^2\\ &= \dfrac{2}{2-\chi} \sigma_{ref}^2 + \dfrac{\chi}{2-\chi} \dfrac{\sigma_q^2}{K_{BPD}^2} + \dfrac{N}{\chi(2-\chi)}\sigma_{DCO}^2 \end{align}\]combine with
\[K_{BPD} = \sqrt{\dfrac{2}{\pi}} \cdot \dfrac{1}{\sigma_{\Delta t}}\] \[\sigma_q^2 = 1 - \dfrac{2}{\pi}\]After some algebra (please provide)
\[\sigma_{\Delta t} = \dfrac{\eta}{2} + \sqrt{\left(\dfrac{\eta}{2}\right)^2 + \sigma_{ref}^2}\] \[\eta = \sqrt{\dfrac{\pi}{2}} \cdot \left(\dfrac{\sigma_{DCO}^2}{2 K_P K_T} + \dfrac{N K_P K_T}{2}\right)\] \[K_{P,opt} = \dfrac{\sigma_{DCO}}{K_T \sqrt{N}}\] \[\eta_{opt} = \sqrt{\dfrac{N \pi}{2}} \sigma_{DCO}\] \[\Delta t[k] = \sigma_{ref}[k] - \sigma_{out}[k]\] \[\sigma_{\Delta t}^2 = \sigma_{ref}^2 + \sigma_{out}^2\] \[\sigma_{out}^2 = \sigma_{\Delta t}^2 - \sigma_{ref}^2\]1
Circuit Design
2
Circuit Design
The circuits is composed of a VCO, a sampler, one reference buffer and two VCO buffer.
Sampler
We have to make sure the SampleEdge
’s falling edge comes when CKvco-
is 0. There are two possibilities, one is CKref
asserts when CKvco+
is 0; another one is CKref
asserts when CKvco+
is 1. In either case, SampleEdge
’s falling edge happens when CKvco+
is 1, then CKvco-
is 0.
The diagram shows single-ended sampling, but the real circuits adopts differential sampling.
Reference buffer
The reference buffer is calibrated per die such that CKref
transit at the crossover of the reference signal.