Home Stochastic Process 08
Post
Cancel

Stochastic Process 08

From Hao Zhang’s Lecture 08

Nonlinear vs. Gaussian

One Random Variable

For \(Y \sim N(0, \sigma^2)\), let’s calculate \(E(Y^n)\)

\[E(Y^n) = \begin{cases} 0, \quad n = 2k-1\\ (2k-1)!! \sigma^{2k}, \quad n = 2k \end{cases}\] \[\begin{align} &\int_{-\infty}^{\infty} y^{2k} \exp\big(-\dfrac{y^2}{2\sigma^2} \big) dy\\ =& -\sigma^2 \int_{-\infty}^{\infty} y^{2k-1} d\Big( \exp\big( - \dfrac{y^2}{2\sigma^2}\big) \Big)\\ =& -\sigma^2 y^{2k-1} \exp \big( -\dfrac{y^2}{2\sigma^2} \big) \Big\vert_{-\infty}^{\infty} + (2k-1)\sigma^2 \int_{-\infty}^{\infty} \exp\big(-\dfrac{y^2}{2\sigma^2} \big) y^{2k-2} dy\\ =& (2k-1)\sigma^2 \int_{-\infty}^{\infty} \exp\big(-\dfrac{y^2}{2\sigma^2} \big) y^{2k-2} dy \end{align}\]

Thus

\[E(Y^{2k}) = (2k-1)\sigma^2 E(Y^{2k-2})\]

Thus

\[E(Y^{2k}) = (2k-1)!! \sigma^{2k}\]

where

\[(2k-1)!! = (2k-1) (2k-3) \dots 1\] \[\begin{align} E(Y^2) &= \sigma^2\\ E(Y^4) &= 3 \sigma^4\\ E(Y^6) &= 15 \sigma^6 \end{align}\]

Multiple Random Variables

\[(X_1, X_2, X_3, X_4) \sim N(0, \Sigma), X \in \mathbb{R}\]

then

\[E(X_1 X_2 X_3 X_4) = E(X_1 X_2) E(X_3 X_4) + E(X_1 X_3) E(X_2 X_4) + E(X_1 X_4) E(X_2 X_3)\]

This is for real variables. For complex variables it is slightly different.

To prove this we use characteristic function

\[E(X_1^{\alpha_{1}} \dots X_n^{\alpha_n}) = \dfrac{1}{j^{\alpha_1 + \dots + \alpha_n}} \frac{\partial^{\alpha_1 + \dots + \alpha_n}}{\partial \omega_1^{\alpha_1} \dots \partial \omega_n^{\alpha_n}} \Phi_{X_1, \dots, X_n}(\omega_1, \dots, \omega_n) \Big\vert_{\omega_1=\dots=\omega_n = 0}\]

this is because

\[\Phi_{X_1,\dots,X_n}(\omega_1, \dots, \omega_n) = E(\exp(j(\omega_1 X_1 + \dots + \omega_n X_n)))\]

If we have 5 random variables with \(N(0, \Sigma)\), we will have

\[E(X_1 X_2 X_3 X_4 X_5) = 0\]

If we have 6 random variables with \(N(0, \Sigma)\), we will have 15 terms, as in the one random variable cases.

Square Device

For W.S.S. Gaussian process \(X(t)\), if \(Y(t) = (X(t))^2\). How to compute \(R_Y(t,s)\)?

\[R_Y(t,s) = E(Y(t)Y(s))= E(X^2(t)X^2(s))\]

Since we know \((X(t), X(t), X(s), X(s))\) is Gaussian

\[\begin{align} R_Y(t,s) &= E(X(t)X(t))E(X(s)X(s)) + E(X(t)X(s))E(X(t)X(s)) + E(X(t)X(s)) + E(X(t)X(s))\\ &= (R_X(0))^2 + 2 (R_X(t-s))^2 \end{align}\]

Hard Limiter

\[g(x) = \mathrm{sgn}(x) = \begin{cases} 1, \quad x > 0\\ 0, \quad x = 0\\ -1, \quad x < 0 \end{cases}\]

We want to calculate \(R_Y(t,s)\) for \(Y = g(X)\), assuming \(X(t)\) is a Gaussian process with zero mean.

\[\begin{align} R_Y(t,s) &= E(Y(t)Y(s)) = E(g(X(t)) \cdot g(X(s)))\\ &= 1 \cdot P(X(t)X(s) > 0) + (-1) \cdot P(X(t)X(s)) < 0 \end{align}\]

we only need to calculate \(P(X(t)X(s) > 0)\)

\[\begin{align} &\Big( \int_{0}^{\infty}\int_{0}^{\infty} + \int_{-\infty}^{0} \int_{-\infty}^{0} \Big) f(x_1, x_2) d x_1 d x_2\\ =& \dfrac{1}{2\pi \sigma_1 \sigma_2 \sqrt{1 - \rho^2}} \Big( \int_{0}^{\infty}\int_{0}^{\infty} + \int_{-\infty}^{0} \int_{-\infty}^{0} \Big) \exp \bigg( -\dfrac{1}{2(1-\rho^2)} \Big(\big(\dfrac{x_1}{\sigma_1}\big)^2 + \big(\dfrac{x_2 }{\sigma_2}\big)^2 - 2\rho \big( \dfrac{x_1}{\sigma_1} \big) \big( \dfrac{x_2}{\sigma_2} \big) \Big) \bigg) d x_1 d x_2\\ =& \dfrac{1}{\pi \sigma_1 \sigma_2 \sqrt{1 - \rho^2}} \int_{0}^{\infty}\int_{0}^{\infty} \exp \bigg( -\dfrac{1}{2(1-\rho^2)} \Big(\big(\dfrac{x_1}{\sigma_1}\big)^2 + \big(\dfrac{x_2 }{\sigma_2}\big)^2 - 2\rho \big( \dfrac{x_1}{\sigma_1} \big) \big( \dfrac{x_2}{\sigma_2} \big) \Big) \bigg) d x_1 d x_2 \end{align}\]

Let \(y_1 = x_1/\sigma_1, y_2 = x_2/\sigma_2\)

\[\dfrac{1}{\pi \sqrt{1 - \rho^2}} \int_{0}^{\infty}\int_{0}^{\infty} \exp \Big( -\dfrac{1}{2(1-\rho^2)} (y_1^2 + y_2^2 - 2\rho y_1 y_2 ) \Big) d y_1 d y_2\]

Let \(y_1 = u_1 + u_2, y_2 = u_1 - u_2\)

\[\begin{align} &(u_1 + u_2)^2 + (u_1 - u_2)^2 - 2 \rho (u_1 + u_2)(u_1 - u_2)\\ =& 2 (u_1^2 + u_2^2) - 2 \rho(u_1^2 - u_2^2) \end{align}\] \[d y_1 d y_2 = \big \vert \mathrm{det} \dfrac{\partial y}{\partial u} \big\vert d u_1 d u_2 = 2 d u_1 d u_2\]

integration region becomes a right angle.

\[\begin{align} &\dfrac{2}{\pi \sqrt{1 - \rho^2}} \int\int \exp \Big( -\dfrac{1}{2(1-\rho^2)} (2(u_1^2 + u_2^2) - 2\rho (u_1^2 - u_2^2)) \Big) d u_1 d u_2\\ =&\dfrac{2}{\pi \sqrt{1 - \rho^2}} \int\int \exp \Big(- \big( \dfrac{u_1^2}{1+\rho} + \dfrac{u_2^2}{1-\rho}\big) \Big) d u_1 d u_2 \end{align}\]

Let \(u_1' = u_1/\sqrt{1+\rho}, u_2' = u_2/\sqrt{1-\rho}\)

\[d u_1 d u_2 = \sqrt{1-\rho^2} d u_1' d u_2'\]

integration region becomes a slightly modified angle, with points \((1/\sqrt{1+\rho},1/\sqrt{1-\rho}), (1/\sqrt{1+\rho}, -1/\sqrt{1-\rho})\)

\[\dfrac{2}{\pi} \int\int \exp \big(- (u_1'^2 + u_2'^2) \big) d u_1' d u_2'\]

then change to polar axis

\[\dfrac{2}{\pi} \int_{0}^{\infty}\int_{-\phi}^{\phi} \exp \big(- r^2 \big) r dr d \theta = \dfrac{2\phi}{\pi}\] \[\tan \phi = \dfrac{1/\sqrt{1-\rho}}{1/\sqrt{1+\rho}} = \sqrt{\dfrac{1+\rho}{1-\rho}}\] \[P(X(t)X(s) > 0) = \dfrac{2}{\pi} \arctan \sqrt{\dfrac{1+\rho}{1-\rho}}\]

use tangent half-angle formula

\[\cos(2\phi) = \dfrac{1 - \tan^2\phi}{1 + \tan^2\phi} = \dfrac{1 - \dfrac{1+\rho}{1-\rho}}{1 + \dfrac{1+\rho}{1-\rho}} = -\rho\] \[P(X(t)X(s) > 0) = \dfrac{2}{\pi} \arctan \sqrt{\dfrac{1+\rho}{1-\rho}} = \dfrac{1}{\pi} \arccos(-\rho)\]

using \(\arcsin(x) + \arccos(x) = \dfrac{\pi}{2}\)

\[P(X(t)X(s) > 0) = \dfrac{1}{\pi} \arccos(-\rho) = \dfrac{1}{\pi} (\dfrac{\pi}{2} - \arcsin(-\rho)) = \dfrac{1}{2} + \dfrac{1}{\pi} \arcsin(\rho)\] \[P(X(t)X(s) < 0) = \dfrac{1}{2} - \dfrac{1}{\pi} \arcsin(\rho)\] \[R_Y(t,s) = \dfrac{2}{\pi} \arcsin(\rho) = \dfrac{2}{\pi} \arcsin \Big( \dfrac{R_X(t-s)}{R_X(0)} \Big)\]

It is easy to see \(Y\) is W.S.S.

Price’s Theorem

  \((X_1, X_2) \sim N(0, 0, \sigma_1^2, \sigma_2^2, \rho)\).

\[\dfrac{\partial E(g(X_1, X_2))}{\partial \rho} = \sigma_1 \sigma_2 E \Big( \dfrac{\partial^2 g(X_1, X_2)}{\partial X1 \partial X_2} \Big)\]

Price’s Theorem for Hard Limiter

\[g(X_1, X_2) = \mathrm{sgn}(X_1) \mathrm{sgn}(X_2)\] \[E(g(X_1, X_2)) = E(\mathrm{sgn}(X_1) \mathrm{sgn}(X_2))\] \[\dfrac{\partial^2 g(X_1, X_2)}{\partial X1 \partial X_2} = 4 \delta(X_1) \delta(X_2)\] \[\dfrac{\partial E}{\partial \rho} = 4\sigma_1 \sigma_2 E(\delta(X_1) \delta(X_2))\] \[\begin{align} E(\delta(X_1) \delta(X_2)) &= \dfrac{1}{2\pi \sigma_1 \sigma_2 \sqrt{1 - \rho^2}} \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} \exp \bigg( -\dfrac{1}{2(1-\rho^2)} \Big(\big(\dfrac{x_1}{\sigma_1}\big)^2 + \big(\dfrac{x_2 }{\sigma_2}\big)^2 - 2\rho \big( \dfrac{x_1}{\sigma_1} \big) \big( \dfrac{x_2}{\sigma_2} \big) \Big) \bigg) \delta(x_1) \delta(x_2) d x_1 d x_2\\ &= \dfrac{1}{2\pi \sigma_1 \sigma_2 \sqrt{1 - \rho^2}} \end{align}\] \[\dfrac{\partial E}{\partial \rho} = \dfrac{2}{\pi} \dfrac{1}{\sqrt{1-\rho^2}}\]

using

\[\dfrac{d}{dx} \arcsin x = \dfrac{1}{\sqrt{1-x^2}}\] \[E(\rho) = \dfrac{2}{\pi} \arcsin(\rho) + C\]

when \(\rho = 0, E(0) = 0, \arcsin(0) = 0\)

\[E(\rho) = \dfrac{2}{\pi} \arcsin(\rho)\]

Price’s Theorem for Square Device

on the video

Proof of Price’s Theorem

\[\begin{align} & E(g(X_1, X_2)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(X_1, X_2) f_{X_1, X_2}(x_1, x_2) d x_1 d x_2\\ =& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(X_1, X_2) \Bigg( \dfrac{1}{(2\pi)^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Phi(\omega_1, \omega_2) \exp(-j(\omega_1 x_1 + \omega_2 x_2)) d \omega_1 d \omega_2 \Bigg) d x_1 d x_2 \end{align}\] \[\Phi(\omega_1, \omega_2) = \exp\Big( -\frac{1}{2} \omega^\intercal \Sigma \omega \Big)\] \[\Sigma = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2\\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}\] \[\Phi(\omega_1, \omega_2) = \exp\Big( -\frac{1}{2} (\sigma_1^2 \omega_1^2 + \sigma_2^2 \omega_2^2 + 2 \rho \sigma_1 \sigma_2 \omega_1 \omega_2) \Big)\] \[\dfrac{\partial}{\partial \rho} \Phi(\omega_1, \omega_2) = - \sigma_1 \sigma_2 \omega_1 \omega_2 \Phi(\omega_1, \omega_2)\] \[\begin{align} &\dfrac{\partial}{\partial \rho} E(g(X_1, X_2)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(X_1, X_2) \Bigg( \dfrac{1}{(2\pi)^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (-\sigma_1 \sigma_2 \omega_1 \omega_2) \Phi(\omega_1, \omega_2) \exp(-j(\omega_1 x_1 + \omega_2 x_2)) d \omega_1 d \omega_2 \Bigg) d x_1 d x_2\\ =& \sigma_1 \sigma_2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(X_1, X_2) \Bigg( \dfrac{1}{(2\pi)^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (-\omega_1 \omega_2) \Phi(\omega_1, \omega_2) \exp(-j(\omega_1 x_1 + \omega_2 x_2)) d \omega_1 d \omega_2 \Bigg) d x_1 d x_2\\ =& \sigma_1 \sigma_2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(X_1, X_2) \dfrac{\partial^2}{\partial X_1 \partial X_2} \Bigg( \dfrac{1}{(2\pi)^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Phi(\omega_1, \omega_2) \exp(-j(\omega_1 x_1 + \omega_2 x_2)) d \omega_1 d \omega_2 \Bigg) d x_1 d x_2\\ =& \sigma_1 \sigma_2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(X_1, X_2) \dfrac{\partial^2}{\partial X_1 \partial X_2} f_{X_1, X_2} (x_1, x_2) d x_1 d x_2 \end{align}\]

if \(g(X_1, X_2)\) grows slower than \(\exp\big(-\frac{1}{2}(\sigma_1^2 x_1^2 + \sigma_2^2 x_2^2)\big)\)

\[\begin{align} \dfrac{\partial}{\partial \rho} E(g(X_1, X_2)) &= \sigma_1 \sigma_2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\dfrac{\partial^2}{\partial X_1 \partial X_2} g(X_1, X_2) f_{X_1, X_2} (x_1, x_2) d x_1 d x_2\\ &= \sigma_1 \sigma_2 E \Big( \dfrac{\partial^2 g(X_1, X_2)}{\partial X1 \partial X_2} \Big) \end{align}\]

Example without Price’s Theorem

\[\cos(X)\]

It doesn’t have to use Price’s theorem. We can directly apply trigeometry formulas, then use characteristic function to get the result.

This post is licensed under CC BY 4.0 by the author.