Home Stochastic Process 13
Post
Cancel

Stochastic Process 13

From Hao Zhang’s Lecture 13

1 hr 33 min

Markov Property

We know

\[\begin{align} &P(X_n=x_n, \dots, X_0=x_0) = P(X_n=x_n \vert X_{n-1}=x_{n-1}, \dots, X_0=x_0) P(X_{n-1}=x_{n-1}, \dots, X_0=x_0)\\ =& P(X_n=x_n \vert X_{n-1}=x_{n-1}, \dots, X_0=x_0) P(X_{n-1}=x_{n-1} \vert X_{n-2}=x_{n-2}, \dots, X_0=x_{0}) P(X_{n-2}=x_{n-1}, \dots, X_0=x_0)\\ =& \Big( \prod_{k=1}^n P(X_k=x_k \vert X_{k-1}=x_{k-1}, \dots, X_0=x_0) \Big) P(X_0 = x_0) \end{align}\]

If we assume

\[P(X_n = x_n \vert X_{n-1} = x_{n-1}, \dots, X_0 = x_0) = P(X_{n}=x_n \vert X_{n-1}=x_{n-1})\] \[\begin{align} P(X_n=x_n, \dots, X_0=x_0) = \Big(\prod_{k=1}^n P(X_k = x_k \vert X_{k-1} = x_{k-1})\Big) P(X_0=x_0) \end{align}\]

Random process can be catagorized as discrete time or continuous time; discrete states or continuous states

First we discuss discrete-time Markov chain (discrete-time and discrete states)

Formally, Markov property can be state as

\[\forall n \in \mathbb{N} \quad P(X_n=x_n \vert X_{n-1}=x_{n-1}, \dots, X_1 = x_1, X_0 = x_0) = P(X_{n}=x_n \vert X_{n-1}=x_{n-1})\]

If we note \(A, B, C\) to be past, current, future, then

\[\begin{align} A &= X_{n-2}, \dots X_{1}\\ B &= X_{n-1}\\ C &= X_{n} \end{align}\]

Then Markov property is

\[P(C \vert B A) = P(C \vert B)\]

It is equivalent to

\[P(CA \vert B) = P(C \vert B) P(A \vert B)\]

with the interpretation of when current is known, past and future are independent.

\[[P(C \vert B A) = P(C \vert B)] \implies P(CA \vert B) = P(C \vert B) P(A \vert B)\] \[\begin{align} &P(C A \vert B) = \dfrac{P(CAB)}{P(B)} = \dfrac{P(CAB)}{P(AB)} \dfrac{P(AB)}{P(B)}\\ =& \dfrac{P(CBA)}{P(BA)} \dfrac{P(AB)}{P(B)} = P(C \vert BA) P(A \vert B)\\ =& P(C \vert B) P(A \vert B) \end{align}\] \[[P(CA \vert B) = P(C \vert B) P(A \vert B)] \implies [P(C \vert B A) = P(C \vert B)]\] \[\begin{align} &P(C \vert B A) = \dfrac{P(CBA)}{P(BA)} = \dfrac{P(CAB)}{P(B)} \dfrac{P(B)}{P(BA)}\\ =& P(CA \vert B) / P(A \vert B) = P(C \vert B) \end{align}\]

Other Equations

Obviously

\[P(X_n \in A \vert X_{n-1}=x_{n-1}, \dots, X_1 = x_1) = P(X_n \in A \vert X_{n-1}=x_{n-1})\] \[\sum_{x_n \in A} P(X_n = x_n \vert X_{n-1}=x_{n-1}, \dots, X_{1} = X_1) = \sum_{x_n \in A} P(X_n = x_n \vert X_{n-1}=x_{n-1}) = P(X_n \in A \vert X_{n-1}=x_{n-1})\]

We also have

\[P(X_{n}=x_n \vert X_{n-1}=x_{n-1}, X_{n-2}\in S_{n-2}, \dots, X_{1} \in S_1) = P(X_n = x_n \vert X_{n-1}=x_{n-1})\]

using the equivalence of \(P(C \vert BA) = P(C \vert B) \iff P(CA \vert B) = P(C \vert B) P(A \vert B)\), we only need to show

\[P(X_n = x_n, X_{n-2}\in S_{n-2}, \dots X_{1} \in S_1 \vert X_{n-1} = x_{n-1}) = P(X_n=x_n \vert X_{n-1}=x_{n-1} ) P(X_{n-2} \in S_{n-2} \dots X_{1} \in S_1 \vert X_{n-1}=x_{n-1})\]

The importance thing is we must exactly know \(X_{n-1}=x_{n-1}\), this cannot be a set.

This post is licensed under CC BY 4.0 by the author.