来自 傅皓政 逻辑课程 005
逻辑学 004
来自 傅皓政 逻辑课程 004 语句:由符号组成的序列 命题:符号序列的意义或内容 语词论证:S是M,所有的P都是M,所以S是P 命题论证:如果P,则Q,P,所以Q 命题逻辑语言 命题逻辑的字符集包含下列几个部分: 语句(或命题)符号:\(P, Q, R, \dots\) 连接词:\(\lnot, \land, \lor, \...
Calculus 004
From Zhenyu Qi’ Lecture 004 Some comments on our usage of logic terms Standard logic terms [\forall \varepsilon \in \mathbb{R} \, [\varepsilon > 0 \implies \exists N \in \mathbb{N} \, \forall...
Calculus 003
From Zhenyu Qi’ Lecture 003 Example: If \(a>1\), then \(\lim_{n\to\infty} \dfrac{1}{a^n} = 0\). [\dfrac{1}{(1+(a-1))^n} = \dfrac{1}{(1+b)^n} \le \dfrac{1}{1 + nb}] Ex1 (squeeze theorem): \(\l...
Stochastic Process 15
From Hao Zhang’s Lecture 15 Markov chain [{X_n}_{n=0}^{\infty}, \quad X_k \in S = {x_1, x_2, \dots } \text{ (finite or countably infinite) }] C-K equatoin [\forall m < n, \quad P_{ij}(n) = \...
Markov Chain
From Hao Zhang’s Lecture 13-18 Markov Chain Markov property: We discuss Distrete time, discrete states random process [{X_n}_{n=0}^{\infty}, \quad X_k \in S = {x_1, x_2, \dots } \text{ (finite ...
Stochastic Process 14
From Hao Zhang’s Lecture 14 From last time Markov property: \(A: \text{ past } \quad B: \text{ Now } \quad C: \text{ Future }\) [P(C \vert BA) = P(C \vert B) \iff P(CA \vert B) = P(C \ver...
Stochastic Process 13
From Hao Zhang’s Lecture 13 1 hr 33 min Markov Property We know [\begin{align} &P(X_n=x_n, \dots, X_0=x_0) = P(X_n=x_n \vert X_{n-1}=x_{n-1}, \dots, X_0=x_0) P(X_{n-1}=x_{n-1}, \dots, X_0=x...
Stochastic Process 09
From Hao Zhang’s Lecture 09
Calculus 002
From Zhenyu Qi’ Lecture 002 Upper and Lower Bound Def: Let \(S \subseteq \mathbb{R}\) and \(r \in \mathbb{R}\). We say that (1.1) \(r\) is an upper bound of \(S\) : \(\quad \forall s \in S \, [...